**2017 CAPSEE CONFERENCE** 

MAKING THE RIGHT INVESTMENTS IN COLLEGE



# How can we help students make better investments in college? *Financial Aid and STEM*

Bridget Terry Long Harvard Graduate School of Education

Joint work with Ben Castleman and Zack Mabel

April 6–7, 2017 | Washington, DC

## **Focus: STEM Fields** (Science, Technology, Engineering and Math)





In STEM occupations, job posting outnumbers unemployed persons 1.9 to one



## **Does Need-Based Aid Improve STEM Selection, Achievement, and Attainment?**

Possible Financial Barriers

- Added costs (e.g. lab and material fees, etc.) make STEM majors more expensive than other options
- Work commitments make pursuing STEM difficult
- Institutional differences exacerbate gaps in STEM outcomes due to high-quality versus low-quality programs
- → Does eligibility for need-based aid increase the number of STEM credits that students attempt and accumulate in college?
- → Does eligibility increase students' probability of earning a bachelor's degree in STEM fields?



## **Focus: Florida Student Access Grant**

- Need-based Grant: \$1,300 in 2000-01
  57% of tuition & fees at FL public 4yrs
  90% of tuition and fees at CCs
- Students also received the Pell Grant (about \$1,750)
  → a good test for an increase in need-based aid



## **Focus: Florida Student Access Grant**





# **Data Set and Samples**

FLDOE K-20 Data Warehouse:

- All FL public HS seniors in AY 1999-00 (N=101,094)
- Detailed student-level data (demographics, HS and college transcripts; aid eligibility and receipt)

Students who completed the FAFSA in 1999-2000 (N=45,727)



#### **Castleman and Long (2016)**

"Looking Beyond Enrollment: The Causal Effect of Need-based Grants on College Access, Persistence, and Graduation"



- → Positive impact on early persistence & credit accumulation
- ➔ Positive impact bachelor's degree receipt within 5, 6, and 7 years (2.5, 3.5, and 4.0 percentage points per \$1,000)



# **Data Set and Samples**

FLDOE K-20 Data Warehouse:

- All FL public HS seniors in AY 1999-00 (N=101,094)
- Detailed student-level data (demographics, HS and college transcripts; aid eligibility and receipt)

Students who completed the FAFSA in 1999-2000 (N=45,727)

Demonstrate readiness for STEM:

- a) Students who surpass college-ready math standards on Florida Math placement test or SAT Math exam (N=20,738)
- b) Students who completed trigonometry or a more advanced Math class in high school (N=8,907)



#### **STEM Credits Earned after Seven Years**

(Locally Linear Regressions fit on either side of the FSAG cut-off)





#### **BA/BS Degree in STEM after Seven Years**

(Locally Linear Regressions fit on either side of the FSAG cut-off)



capsee

# Table 5: The Effect of FSAG Eligibility on STEM OutcomesThrough Year 7

|                                              | STEM Credits            | STEM Credits       | BA/BS Degree in   |
|----------------------------------------------|-------------------------|--------------------|-------------------|
|                                              | Attempted               | Completed          | STEM              |
| Panel A: College Math Sample ( $N = 2,834$ ) |                         |                    |                   |
| Eligible for FSAG                            | 2.701<br>[2.076]        | 3.705**<br>[1.800] | 0.027*<br>[0.015] |
| R-squared                                    | 0.195                   | 0.204              | 0.191             |
| Outcome mean above cut-off                   | 23.55                   | 18.27              | 0.043             |
| Panel B: HS Trig+ Sample (N =1,283)          |                         |                    |                   |
| Eligible for FSAG                            | <b>5.456</b><br>[4.115] | 7.259**<br>[3.533] | 0.028<br>[0.032]  |
| R-squared                                    | 0.300                   | 0.310              | 0.290             |
| Outcome mean above cut-off                   | 26.47                   | 20.98              | 0.059             |

\*\*\* p<0.01 \*\* p<0.05 \* p<0.10 Notes: Robust standard errors, clustered at the HS level, are shown in brackets. All results are from multiple imputation OLS/LPM specifications estimated with an EFC window +/- \$1,000 around the FSAG cut-off and include the following covariates: race/ethnicity dummy variables; female dummy variable; HS senior year GPA; SAT math and verbal scores (imputed where missing); whether the student was in a gifted and talented prog<u>ma</u>m; parental AGI; student age, and whether the student was eligible for the Bright Futures Scholarship. All models also include high school fixed effects and a constant.

#### capsee

#### "Can Financial Aid Help to Address the Growing Need for STEM Education?

*Conclusions*: Eligibility for additional need-based aid...

- Increased STEM credit completion 16-19 percent over students who were ineligible for FSAG (33 percent for the sample who had taken at least trigonometry in HS)
- Robust to different specifications
- Effects on degree attainment are imprecise but suggest that STEM degree production may have increased by 50 percent
- Results appear to be driven by shifting students into STEMheavy courseloads, suggesting aid availability impacts the academic choices students make after deciding to enroll



# **Policy Implications**

- For academically-qualified students, need-based aid may be an effective instrument to increase STEM attainment
- Policy efforts should continue to focus on improving the math and science preparation in high school
- But aid also helps with academic persistence

#### Additional Questions for Future Research

- Are academically-qualified students experiencing a STEM mismatch (given institutional differences)?
- Do the impacts of financial aid on STEM achievement and attainment vary by STEM field?



#### Visit our website at <u>capseecenter.org</u>

# You can also follow us on Twitter at @capsee and like us on Facebook.

Center for Analysis of Postsecondary Education and Employment Teachers College, Columbia University

525 West 120th Street, Box 174, New York, NY 10027

TEL: 212.678.3091 | capsee@columbia.edu

CAPSEE is funded through a grant (R305C110011) from the Institute of Education Sciences, U.S. Department of Education.