How can we help students make better investments in college?

Financial Aid and STEM

Bridget Terry Long
Harvard Graduate School of Education

Joint work with Ben Castleman and Zack Mabel
Focus: STEM Fields
(Science, Technology, Engineering and Math)

Overall, unemployed people outnumbered job posting by 3.6 to one.

In STEM occupations, job posting outnumbers unemployed persons 1.9 to one.
Does Need-Based Aid Improve STEM Selection, Achievement, and Attainment?

Possible Financial Barriers

- Added costs (e.g. lab and material fees, etc.) make STEM majors more expensive than other options
- Work commitments make pursuing STEM difficult
- Institutional differences exacerbate gaps in STEM outcomes due to high-quality versus low-quality programs

→ *Does eligibility for need-based aid increase the number of STEM credits that students attempt and accumulate in college?*

→ *Does eligibility increase students’ probability of earning a bachelor’s degree in STEM fields?*
Focus: Florida Student Access Grant

- Need-based Grant: $1,300 in 2000-01
 - 57% of tuition & fees at FL public 4yrs
 - 90% of tuition and fees at CCs

- Students also received the Pell Grant (about $1,750)
 → a good test for an increase in need-based aid
Focus: Florida Student Access Grant

- **FSAG Eligibility Cut-Off**
 - FSAG: $3050
 - No FSAG: $1750

Discontinuity we exploit to estimate the effect of an FSAG eligibility on students’ outcomes.
Data Set and Samples

FLDOE K-20 Data Warehouse:

• All FL public HS seniors in AY 1999-00 (N=101,094)
• Detailed student-level data (demographics, HS and college transcripts; aid eligibility and receipt)

Students who completed the FAFSA in 1999-2000 (N=45,727)
Castleman and Long (2016)
“Looking Beyond Enrollment: The Causal Effect of Need-based Grants on College Access, Persistence, and Graduation”

Credit completed within 3 years

- Positive impact on early persistence & credit accumulation
- Positive impact bachelor’s degree receipt within 5, 6, and 7 years (2.5, 3.5, and 4.0 percentage points per $1,000)
Data Set and Samples

FLDOE K-20 Data Warehouse:
- All FL public HS seniors in AY 1999-00 (N=101,094)
- Detailed student-level data (demographics, HS and college transcripts; aid eligibility and receipt)

Students who completed the FAFSA in 1999-2000 (N=45,727)

Demonstrate readiness for STEM:
 a) Students who surpass college-ready math standards on Florida Math placement test or SAT Math exam (N=20,738)
 b) Students who completed trigonometry or a more advanced Math class in high school (N=8,907)
Castleman, Long, and Mabel (2017)

STEM Credits Earned after Seven Years
(Locally Linear Regressions fit on either side of the FSAG cut-off)

A. College Math Sample
B. HS Trig+ Sample
Castleman, Long, and Mabel (2017)

BA/BS Degree in STEM after Seven Years
(Locally Linear Regressions fit on either side of the FSAG cut-off)

A. College Math Sample

B. HS Trig+ Sample
Table 5: The Effect of FSAG Eligibility on STEM Outcomes Through Year 7

<table>
<thead>
<tr>
<th></th>
<th>STEM Credits Attempted</th>
<th>STEM Credits Completed</th>
<th>BA/BS Degree in STEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: College Math Sample (N = 2,834)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible for FSAG</td>
<td>2.701</td>
<td>3.705</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>[2.076]</td>
<td>[1.800]</td>
<td>[0.015]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.195</td>
<td>0.204</td>
<td>0.191</td>
</tr>
<tr>
<td>Outcome mean above cut-off</td>
<td>23.55</td>
<td>18.27</td>
<td>0.043</td>
</tr>
<tr>
<td>Panel B: HS Trig+ Sample (N =1,283)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible for FSAG</td>
<td>5.456</td>
<td>7.259</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>[4.115]</td>
<td>[3.533]</td>
<td>[0.032]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.300</td>
<td>0.310</td>
<td>0.290</td>
</tr>
<tr>
<td>Outcome mean above cut-off</td>
<td>26.47</td>
<td>20.98</td>
<td>0.059</td>
</tr>
</tbody>
</table>

*** p<0.01 ** p<0.05 * p<0.10

Notes: Robust standard errors, clustered at the HS level, are shown in brackets. All results are from multiple imputation OLS/LPM specifications estimated with an EFC window +/- $1,000 around the FSAG cut-off and include the following covariates: race/ethnicity dummy variables; female dummy variable; HS senior year GPA; SAT math and verbal scores (imputed where missing); whether the student was in a gifted and talented program; parental AGI; student age, and whether the student was eligible for the Bright Futures Scholarship. All models also include high school fixed effects and a constant.
Conclusions: Eligibility for additional need-based aid…

- Increased STEM credit completion 16-19 percent over students who were ineligible for FSAG (33 percent for the sample who had taken at least trigonometry in HS)
- Robust to different specifications
- Effects on degree attainment are imprecise but suggest that STEM degree production may have increased by 50 percent
- Results appear to be driven by shifting students into STEM-heavy course loads, suggesting aid availability impacts the academic choices students make after deciding to enroll
Policy Implications

• For academically-qualified students, need-based aid may be an effective instrument to increase STEM attainment
• Policy efforts should continue to focus on improving the math and science preparation in high school
• But aid also helps with academic persistence

Additional Questions for Future Research

• Are academically-qualified students experiencing a STEM mismatch (given institutional differences)?
• Do the impacts of financial aid on STEM achievement and attainment vary by STEM field?
Visit our website at capseecenter.org

You can also follow us on Twitter at @capsee and like us on Facebook.

Center for Analysis of Postsecondary Education and Employment
Teachers College, Columbia University

525 West 120th Street, Box 174, New York, NY 10027

TEL: 212.678.3091 | capsee@columbia.edu

CAPSEE is funded through a grant (R305C110011) from the Institute of Education Sciences, U.S. Department of Education.