Labor Market Returns to “Some College”
Robustness Checks

Clive Belfield
Queens College
City University of New York
Identifying Labor Market Returns for community college students

Matched data:
- Full transcripts
- Durations/awards at transfer colleges
- Quarterly earnings pre-in-post college from UI records
- AR, CA, CO, FL, KY, MI, OH, VA, WA

Methods:
- Individual fixed effects models over period pre-in-post college controlling for personal, college, financial attributes
Earnings gains for Associate degree over non-completion of college are high, durable, consistent and robust.
1. Robust across alternative sample selections
Sample selections:

Young
Weak labor market attachment
Slow to exit college
Missing data pre-college entry
Zero earnings
Transfer students
2. Robust across most alternative functional form specifications
Quarterly Earnings by Quarters since First Entry - Female

Ohio data
Minaya and Scott-Clayton (2016)
3. Functional form issues that do not appear to matter:

 Adding time interaction covariates
 Ashenfelter dip
 Post-college indicators
4. Functional form issues that matter:

- **Time span** of data
- Individual time **trends**

Associate degree gains appear **higher** when these issues are addressed.
5. **Consistent** with results from ordinary least squares estimation
Steady-state best estimate: Quarterly earnings gains
Associate degree over non-completion

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>Fixed Effects</th>
<th>(FE-OLS)/OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>$2,989</td>
<td>$2,881</td>
<td>4%</td>
</tr>
<tr>
<td>Ohio</td>
<td>$2,439</td>
<td>$2,313</td>
<td>-5%</td>
</tr>
<tr>
<td>Female:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>0.319</td>
<td>0.327</td>
<td>+2%</td>
</tr>
<tr>
<td>Kentucky</td>
<td>$2,290</td>
<td>$2,363</td>
<td>+3%</td>
</tr>
<tr>
<td>North Carolina</td>
<td>$2,136</td>
<td>$1,907</td>
<td>-11%</td>
</tr>
<tr>
<td>Washington</td>
<td>$1,051</td>
<td>$600</td>
<td>-43%</td>
</tr>
<tr>
<td>Male:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>0.272</td>
<td>0.118</td>
<td>-14%</td>
</tr>
<tr>
<td>Kentucky</td>
<td>$1,349</td>
<td>$1,484</td>
<td>+10%</td>
</tr>
<tr>
<td>North Carolina</td>
<td>$1,115</td>
<td>$1,113</td>
<td>0%</td>
</tr>
<tr>
<td>Washington</td>
<td>$914</td>
<td>$400</td>
<td>-56%</td>
</tr>
</tbody>
</table>
Fixed Effects Models

More **complex** to interpret
Require a lot more **more data**
Yield **consistent** steady-state results
Possibly **understate** returns
Reveal **earnings trajectories**