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Appendix A 
Methods for Choosing Optimal Bandwidths 

A1. Leave-One-Out Cross Validation (Ludwig & Miller, 2005) 

Leave-one-out cross validation finds the optimal bandwidth by minimizing mean 
prediction errors—differences between the predicted value of Y and the actual value of Y for all 
observations i lying in the support, where the prediction comes from running each time a locally 
weighted regression using all the remaining observations on the same side of the cutoff (either 
left or right) but excluding observation i. Imbens and Lemieux (2008) and Imbens and 
Kalyanaraman (2012) suggest using local observations that are near to the cutoff. Following their 
suggestions, we trim observations on the extreme tails, taking only half the observations (those 
smaller than the median centered-EFC values) as the support on each side when running all 
regressions to predict Y. The objective is to minimize the average of prediction errors over all 
observations in the support. The cross-validation criterion is as follows: 

 

ℎ𝐶𝑉
𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ𝐶𝑉𝑌.5(ℎ) = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ[

1
𝑁
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A2. Direct Plug-In Rule: Imbens and Kalyanaraman (2012) 

Imbens and Kalyanaraman (2012) (hereafter IK) propose to find an optimal bandwidth 
that minimizes the loss function, which is the mean of the squared prediction errors approaching 
from the left and right side of the cutoff (see below equation). To minimize this loss function, IK 
introduce a first-order approximation algorithm, referred to as the asymptotic mean squared error 
(AMSE). In mathematical notation, IK’s optimal bandwidth algorithm calculates by using the 
following form: 

 

ℎ𝐼𝐾
𝑜𝑝𝑡  = 𝑎𝑟𝑔𝑚𝑖𝑛ℎE[((�̂�+ − 𝜇+)2 − (�̂�− − 𝜇−))2]

=  𝐶(𝑘)[
𝜎+2(𝑥0) + 𝜎−2(𝑥0)

𝑓(𝑥0)�𝑚+
(2)(𝑥0)2 − 𝑚−

(2)(𝑥0)2�
]
1
5𝑁−15 

To obtain estimates of the unknown quantities in the formula, 𝑓(𝑥0)� , 𝜎�, and 𝑚� (2), IK 
introduce a three-step algorithm that calculates consistent estimators of the parameters—first, 
calculate pilot bandwidth from Silverman’s rule and estimate forcing variable density and 
conditional outcome variances at the cutoff; second, calculate preliminary bandwidths and use 
them to estimate second derivatives (curvature) at the cutoff; and third, add regularization terms 
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to adjust for low precision for curvature estimators. IK’s algorithm is one of plug-in rules to 
estimating optimal bandwidth. 

A3. Second-Order Direct Plug-In Rule: Calonico, Cattaneo, and Titiunik (2014) 

Calonico, Cattaneo, and Titiunik (2014) (hereafter CCT) minimize the same loss function 
as IK. The advancement in CCT is using bias-corrected estimators for unknown parameters to 
minimize the loss function by (1) constructing an alternative estimator for outcome variances 
that does not use a pilot bandwidth during the first step of IK’s algorithm and (2) using 
consistent estimators for the preliminary bandwidths that are used to construct consistent 
population estimators during the second step of IK’s algorithm (CCT).1 

A4. Estimation of Bin Size 

We follow McCrary’s (2008) equation of bin size calculation 𝑏� = 2𝜎�𝑛−
1
2 (where 𝜎� is the 

sample standard deviation of the running variable) and derive a $100 centered-EFC bin size as 
optimal. We use $100 centered-EFC values throughout the paper where bin size is required for 
estimation. 

A5. Degree of Polynomial 

Appendix Table C3 shows goodness-of-fit test results across different specifications—+/-
$2,000 bandwidth with covariates, without covariates, +/-$1,000 bandwidth with covariates, and 
+/-$4,000 bandwidth with covariates. Betas and standard errors represent coefficients for the 
treatment term and p-values are for the joint test on whether bin dummies are jointly equal to 
zero. We test goodness-of-fit up to polynomial of degree 4.2 Polynomial of degree 0 function 
includes a constant and a treatment term where the coefficient of the treatment term is just a 
comparison between means of each side of the cutoff. 

When we consider smaller or larger bandwidths (+/-$1,000 or +/-$4,000), the goodness-
of-fit test suggests including higher order polynomials for our regression model. This is not 
surprising for a large bandwidth. However, it is surprising that for some variables the goodness-
of-fit test suggests higher than order 4 polynomial even in a small bandwidth (+/-$1,000). This 
may simply indicate that some of these variables are quite noisy right around the cutoff, rather 
than describing a true functional form.  In our preferred model with a +/-$2,000 bandwidth, zero 
polynomials are preferred for re-enrollment outcomes in Year 1 spring and fall, cumulative 
GPAs and earning outcomes, and earned any degree/certificate or transferred outcome in Year 3. 
For total loans received, total aid received, and full-time enrollment in Year 1 fall variables, the 

                                                 
1 Please refer to CCT for further description of their algorithm. 
2 Gelman and Imbens (2014) suggest avoiding the use of very high degree of polynomial regressions in RD designs. 
Therefore, we focus up to polynomial degree 4. Nevertheless, we do not see any important changes in the goodness-
of-fit significance level for degree 5 or 6 polynomials.  
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goodness-of-fit test recommends using a linear regression specification (degree 1). In general for 
+/-$2,000 bandwidth, we see drops in significance level at polynomial degree 1 and at 
polynomial degree 4. Since a lower degree of polynomial is preferred for local polynomial 
regressions (Gelman & Imbens, 2014), goodness-of-fit recommends degree 1 polynomial when 
using a +/-$2,000 bandwidth. We also see quite a drop in polynomial degree 1 and 2 for the +/-
$1,000 bandwidth, while the +/-$4,000 bandwidth requires up to degree 3 to see a first drop in 
significance. 
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Appendix B 
Gerard, Rokkanen, and Rothe (2016) Bounds 

B1. Assumptions for GRR Bounds 

Gerard, Rokkanen, and Rothe (2016) (hereafter GRR) require two additional assumptions 
regarding what they call the “selectors” (those students whose enrollment decisions shift as a 
result of their Pell eligibility): that the direction of selection is one-sided and that the conditional 
density is left-differentiable. Let 𝑆𝑖 ∈ {0,1} be indicators of sample selection (1 selector who 
changes enrollment decisions depending on funding package and 0 non-selectors).3 We apply the 
usual RD assumptions to non-selectors—treatment probability is discontinuous at the cutoff, 
monotonicity, conditional expected potential outcome and conditional treatment probability is 
continuous at the cutoff, and the conditional running variable density for the non-selectors is 
differentiable and its derivative is continuous at the cutoff. 

GRR assumption 1. Selectors are only located on one side of the cutoff (in our case, 
those who are eligible for Pell—i.e., the left side of the cutoff) 

Pr(Xi < 𝑐|𝑆𝑖 = 1) = 1 

GRR assumption 2. Selector’s conditional density of a running variable is left-
differentiable at the cutoff. 

FX|S=1(𝑥) is left-differentiable in x at c 

The added assumption implies that the left side of the cutoff is composed of only non-
selectors (since all-selectors are opted out) while the right side of the cutoff has both selectors 
and non-selectors.4 One of the major pitfalls of applying this commonly used “one-sided” 
assumption from prior literature (GRR, 2016; Lee, 2009; McCrary, 2008) to our sample selection 
problem is that it is not plausible to assume that the selectors all choose to opt out. There is no 
reason to believe that we will have one side with only the non-selectors. 

                                                 
3 These selectors are equivalent to manipulators in GRR, as they are the ones who shift enrollment decisions (not to 
attend the community college system) because of the total funding package offered to those barely passing the Pell 
eligibility cutoff. We use the terms “selector vs. non-selector” rather than “manipulators vs. non-manipulators” 
because our density jump is a choice of enrollment selection and not a manipulation in running variable expected 
family contribution. 
4 The implication of this assumption in GRR differs slightly from that in our paper. GRR have higher density at the 
same side as both manipulators and non-manipulators (the treated side). Therefore, the one-sided assumption implies 
that the treated side consists of a mixture from both manipulators and non-manipulators while the non-treated side 
consists of only non-manipulators. On the other hand, in our case, selectors (manipulators in GRR) choose not to 
attend community college and therefore, decide to be out of our sample. Thus, we have lower density on the treated 
side (which includes only non-selectors) and higher density on the non-treated side (which includes a mixture of 
both selectors and non-selectors). This change of preference implies that the treated side will only consist of non-
selectors while the control side has both selectors and non-selectors. 
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B2. Implementing GRR Bounds 

The GRR bounding exercise takes the following steps. First, estimate the proportion of 
selectors (τ) by calculating the jump at the cutoff from the height of the density curve using local 
polynomial smoothing with rectangular kernel of degree 1 polynomial. Second, assuming 
selector as the best (worst) in outcomes, estimate the upper (lower) bound by the difference in 
expectation of outcome in the left and right side of the cutoff with post-trimmed smaller (larger) 
than τ (1 − τ) quantiles (respectively). 

Mathematically,  

Δ0𝑈 = E[Yi|𝑋𝑖 = 𝑐−] − 𝐸[𝑌𝑖|𝑋𝑖 = 𝑐+,𝑌𝑖 ≥ 𝑄𝑌|𝑋(𝜏|𝑐+)] 

Δ0𝐿 = E[Yi|𝑋𝑖 = 𝑐−] − 𝐸[𝑌𝑖|𝑋𝑖 = 𝑐+,𝑌𝑖 ≤ 𝑄𝑌|𝑋(1 − 𝜏|𝑐+)] 

For discrete outcomes, trimming can be done by lower-coding (top-coding) the subtracted 
proportion, the proportion of those who are below (above) the conditional τ (1 − τ) quantile – τ, 
for upper (lower) bounds (respectively). 

In practice, GRR suggest using the polynomial truncation rule for trimming samples, 
which means using local polynomial approximations (we specify with rectangular kernel of 
degree 1 polynomial) to estimate conditional quantile functions to get τ (1 − τ) quantile 
estimators. After trimming data using τ (1 − τ) quantile estimators, we can estimate upper and 
lower bounds of differences in average outcome on each side of the cutoff by running a local 
polynomial regression (where we again use rectangular kernel of degree 1 polynomial). Because 
we have many outcomes of interest, we do not estimate standard errors for upper and lower 
bounds, which can be done by bootstrapping as introduced in GRR. In addition, further extension 
could be achieved by adding covariates from the start of calculating the density jump and 
throughout the steps to tighten the bounds. We do not employ this extension of adding covariates 
due to limitation in time and complexity rising from exploring numerous outcomes. 
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Appendix C 
Sensitivity Checks 

Table C1: Testing for Continuity of Covariates  

  

 

Note. As a sensitivity check, we test continuity of covariates by replacing the dependent variable in the regression 
with covariates. We use the basic +/- $2,000 bandwidth with no covariate controls specification. Coefficients 
indicate beta values for indicator of treatment status (i.e., 1 if eligible for Pell and 0 otherwise). 

*** p < .01, ** p < .05, * p < .1. 

 

 

Table C2: Summary of Optimal Bandwidths 

 

Note. Cross-validation and two plug-in estimators (IK and CCT) are estimated 
using the rdbwselect_2014 function in the Stata rdrobust package by Calonico, Cattaneo, 
Farrell, and Titiunik (2017). 

  

Mean Outcomes Mean Outcomes Mean Outcomes
Outcome Just Above Cutoff Coef. (S.E.) Just Above Cutoff Coef. (S.E.) Just Above Cutoff Coef. (S.E.)
Female (%) 0.556 -0.037 (0.023) 0.550 -0.035 (0.027) 0.572 -0.045 (0.044)
Black (%) 0.242 -0.029 (0.020) 0.263 -0.015 (0.024) 0.178 -0.044 (0.033)
Hispanic (%) 0.071 -0.005 (0.011) 0.087 -0.001 (0.015) 0.022 -0.001 (0.013)
Asian (%) 0.050 0.000 (0.010) 0.064 0.003 (0.013) 0.004 0.004 (0.005)
American Indian (%) 0.004 0.001 (0.003) 0.004 0.001 (0.003) 0.004 0.001 (0.006)
Dual Enrollment (%) 0.227 0.044 (0.020) ** 0.182 0.028 (0.021) 0.368 0.047 (0.043)
Age 21.095 -0.056 (0.301) 21.196 -0.207 (0.338) 20.779 0.386 (0.639)
Income $53,604 -$366 (739) $53,688 -$600 (903) $53,342 $88 (1241)
Depend 0.810 0.012 (0.018) 0.790 0.020 (0.021) 0.871 -0.020 (0.032)
Remedial Reading placement score 54.484 0.349 (1.807) 54.893 1.084 (2.113) 53.211 -1.410 (3.506)
Remedial Writing placement score 48.006 -0.167 (1.777) 48.999 0.525 (2.083) 44.910 -0.840 (3.406)
Remedial Math placement score 20.122 -0.564 (0.989) 20.177 -0.273 (1.194) 19.950 -1.128 (1.751)
Has Remedial Reading (%) 0.671 -0.007 (0.021) 0.676 0.000 (0.025) 0.656 -0.025 (0.042)
Has Remedial Writing (%) 0.681 -0.016 (0.021) 0.688 -0.010 (0.025) 0.660 -0.026 (0.042)
Has Remedial Math (%) 0.563 0.003 (0.023) 0.558 0.014 (0.026) 0.579 -0.025 (0.044)

Sample size 1,877 1,421 4567,855 5,753 2,102

Loan Schools No-Loan SchoolsAll Schools
Basic 2000bw. Basic 2000bw. Basic 2000bw.
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Table C3: Optimal Degree of Polynomial 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, among those who are attending loan schools, and who are within a +/- $2,000 
bandwidth. Beta and standard errors indicate coefficient for indicator variable of treatment status (i.e., eligible for 
Pell). Huber-White robust standard errors are in parentheses. P-values are for goodness-of-fit test, which tests for the 
null that all bin dummies (by Pell cutoff centered-EFC $100) are jointly equal to zero. Optimal degree polynomial is 
the degree where adding a higher order term no longer makes the bin dummies jointly significant. Polynomial 
degree 0 is comparing means left and right side of the cutoff with bin dummies. Column 1 specifies for polynomial 
degree 0, column 2 for degree 1, column 3 for degree 2, column 4 for degree 3, and column 5 for degree 4. All 
specifications control for cohort fixed effects. 

*** p < .01, ** p < .05, * p < .1. 



8 

Appendix D 
Probability of Receiving Pell Grant (Left) and Average Amount of Pell Grant (Right) by EFC 

Figure D1 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom race/ethnicity is not missing, and who are 
non-dual enrollees. Each point is a mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only points that fall within 
+/- $4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 bandwidth. 
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Appendix E 
Baseline Covariance by EFC—Loan School Only 

Figure E1 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethinicty is not missing, who are non-dual enrollees, and who are attending loan schools only. Each point is a 
mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only points that fall within a +/- 
$4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 bandwidth. 
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Figure E2 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, who are non-dual enrollees, and who are attending loan schools only. Each point is a 
mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only points that fall within a +/- 
$4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 bandwidth. 
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Figure E3 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, who are non-dual enrollees, and who are attending loan schools only. Each point is a 
mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only points that fall within a +/- 
$4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 bandwidth. 
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Figure E4 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, who are non-dual enrollees, and who are attending loan schools only. Each point is a 
mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only points that fall within a +/- 
$4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 bandwidth. 
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Appendix F 
Baseline Covariance by EFC—Continuous School Only 

Figure F1 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, who are non-dual enrollees, and who are attending loan schools that are defined as 
having a continuous density of observations around the cutoff as determined using the Calcagno and Long (2008) 
methodology. Each point is a mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only 
points that fall within a +/- $4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 
bandwidth. 
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Figure F2 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, who are non-dual enrollees, and who are attending loan schools defined as having a 
continuous density of observations around the cutoff, as determined using the Calcagno and Long (2008) 
methodology. Each point is a mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only 
points that fall within a +/- $4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 
bandwidth. 
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Figure F3 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, who are non-dual enrollees, and who are attending loan schools defined as having a 
continuous density of observations around the cutoff, as determined using the Calcagno and Long (2008) 
methodology. Each point is a mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only 
points that fall within a +/- $4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 
bandwidth. 
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Figure F4 

 

Note. Samples are restricted to 2008–2010 fall entry cohort students who have filed FAFSA, for whom 
race/ethnicity is not missing, who are non-dual enrollees, and who are attending loan schools defined as having a 
continuous density of observations around the cutoff, as determined using the Calcagno and Long (2008) 
methodology. Each point is a mean value of the outcome that falls within a bin size of $100 EFC. Graph shows only 
points that fall within a +/- $4,000 bandwidth. Black line is a fitted line of mean points within a +/- $2,000 
bandwidth. 
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