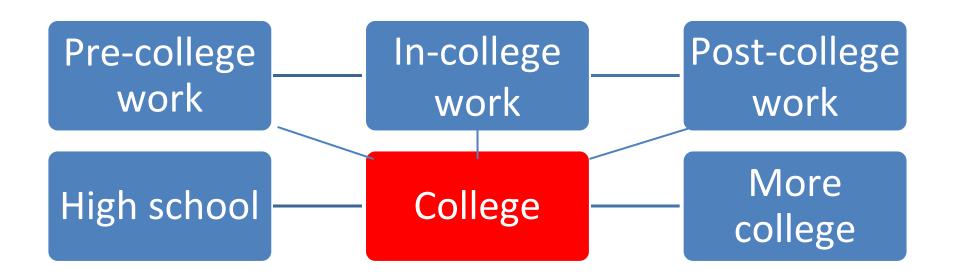


Linking College and Labor Market Datasets for Research on the Returns to College

Di Xu Thomas Bailey, Clive Belfield, Shanna Jaggars Teachers College, Columbia University


March, 2014 | AEFP Preconference Workshop

Outline

- 1. What data is linkable?
- 2. What does data typically look like?
- 3. Advantages of using linked data
- 4. Disadvantages of using linked data
- 5. Potential Problems with the analysis
- 6. Practicalities of obtaining and using linked data
- 7. Practice: cleaning and linking data sets

Student Progress

State Administrative College Data

- Begin with college data: link across, forward, back
- These data are different from longitudinal surveys:
 - Created for basic administration and compliance purposes
 - Variation by state in quality, comprehensiveness, history
- Coverage issues are very important:
 - Often limited to public sector within one state
 - University systems typically hold own data; community college districts or systems typically hold own data
 - Centralized states (collect and hold data across all publics) and decentralized states (data available college-by-college basis)

Datasets Linkable to College Data

- National Student Clearinghouse data on where students transfer to, how long they persist, award earned
- Merge on name and birthday
- High match rate: NSC coverage is very full (includes all Title IV colleges)
- State high school data with full transcript information
- Merge on name/birthday/ID
- Low match rate: student mobility and lagged/delayed college enrollment and enrollment out of publics or out of state
- College-level data from IPEDS or other sources; census data
 - $\circ~$ Merge on geocode or college name

Linkable Labor Market Data

- Unemployment Insurance data for individual student earnings
 - $\circ~$ Merge college and UI data using SSN
 - Moderate match rate: coverage of employment data may not be complete
- Labor market data may differ from national surveys
 - $\circ~$ Self report vs. formal record
 - o Different follow up vs. quarterly employment data
 - Total income vs. income data from all formal jobs
 - Sometimes hours worked and occupation

College Transcript Data: Course-Level

Obs	id	term	course	credits	grade
1	04_00000001	FA04	SPD100	3	B-Good
2	04_00000002	FA04	ART131	3	D-Poor
3	04_00000002	FA04	ENG01	5	U-Unsatisfactory
4	04_00000002	FA04	MTH02	5	W-Withdrawal
5	04_00000002	FA04	MUS121	3	W-Withdrawal
6	04_00000002	FA05	ART175	4	F-Failure
7	04_00000002	FA05	MTH01	4	U-Unsatisfactory
8	04_00000003	FA04	HIS121	3	C-Average
9	04_00000003	FA04	MAC131	2	W-Withdrawal
10	04_00000003	FA04	MTH271	3	A-Excellent

- Multiple rows per student
- One row per course
- Generally:
 - Semester course taken
 - Course name and number
 - Credits attempted
 - Grade
 - Typically <u>not</u> section number or information on instructor
- Can be used to derive semester-level and student-level variables

College Demographic Data: Student-Level

Obs	id	gender	race
1	04_000000001	1	1
2	04_00000002	1	1
3	04_00000003	1	1
4	04_00000004	1	2
5	04_00000005	1	1
6	04_000000006	1	4
7	04_000000007	2	1
8	04_00000008	2	1
9	04_00000009	2	1
10	04_000000010	1	1

- Looks just like survey data
- One row per student
- Generally:
 - Gender
 - Race
 - Birthdate
 - Zipcode sometimes

College Award Data: Student-Level

Obs	id	award_long	award_term	award_cip	award_major
1	2004_05_FA_00000008	Associate of Arts and Sciences	FA07	240101	Education
2	2004_05_FA_000000011	Associate of Applied Science	SU06	110101	Information Systems Technology
3	2004_05_FA_000000012	Associate of Applied Science	SU08	520399	Accounting

- Includes award, semester of award attainment, cip codes, major field of award
- Classification of Instructional Programs (CIP 2000): (https://nces.ed.gov/pubs2002/cip2000/)
- Variations across states in defining types of award
- Multiple Award
- Transfer students

Other College Administrative Data

- Placement test scores and assignment
 - Missing values
 - Multiple tests: reading, writing, math
 - Multiple scores
- Financial aid
 - Missing values: Only available for student who are eligible and applied for financial aid

NSC Data: Semester-Level

Obs	id	Enrollment_Begin	Public_Private	Туре
1	04_000000001	20070827	Public	2
2	04_00000004	20060824	Public	4
3	04_00000008	20080114	Public	4
4	04_00000010	20060821	Public	4
5	04_000000010	20070108	Public	4
6	04_00000010	20070820	Public	4
7	04_00000010	20080114	Public	4
8	04_000000010	20080901	Public	4
9	04_000000010	20090120	Public	4
10	04_000000010		Public	4

- From National Student
 Clearinghouse –
 Enrollment begin and end dates
- Derive semester-level variables (e.g. coenrollment; postcommunity college enrollment)

Levels of Measurement: Quarterly

Obs	id	quarter	wages	naics_code
1	04_00000001	20031	12003.89	722110
2	04_00000001	20032	12100.03	722110
3	04_00000001	<mark>2003</mark> 3	12060.12	722110
4	04_00000001	20034	12223.24	722110
5	04_00000001	20041	0.00	
6	04_00000001	20042	3554.30	722211
7	04_00000001	20043	8500.66	722211
8	04_00000001	20044	8800.70	722211
9	04_00000001	20051	8322.68	722211
10	04_000000001	20052	8593.32	722211

- Example UI data
- Date of quarter won't match exactly with enrollment semesters
- Need to be adjusted for inflation
- Multiple entries in a quarter for one student
- North American Industry Classification System

(https://www.census.gov/eos/www/naics/)

Advantages with Linked Data (1)

- Longitudinal data
- Reduce bias from attrition
- Large sample sizes allow for subgroup analysis
 - Colleges, programs, courses
 - Demographic groups
- Address a lot of questions for education policy
- More precise, accurate, and various measures of educational attainment

Student Pathways: Transfers

According to NSC:

- •One-third of all students transfer
- •14% of students who start at 4-year college transfer to 2-year college
- •Transfer from 2-year to 4-year colleges
- •Co-enrollment
- •Implication for research?
 - Enrollment
 - Educational Award

Student Pathways: Course-taking

Students take many different courses:

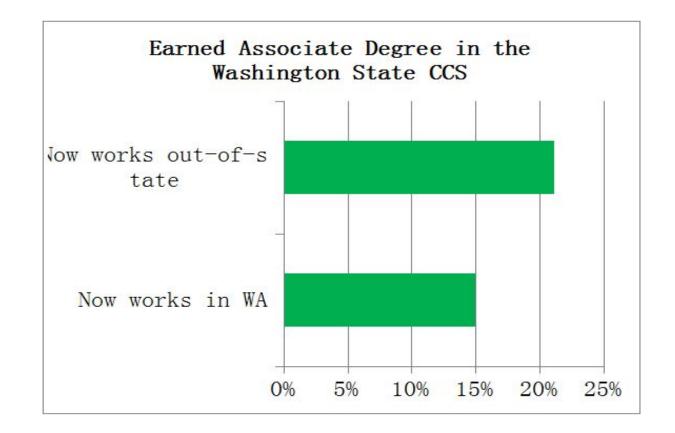
- Below college-level courses
 - Remedial classes: reading, writing, math, biology, chemistry etc.
 - ESL classes
 - Basic skills
 - Student success courses
- •College-level courses
 - Gatekeeper courses: course required for an award
 - Subject-specific courses

Advantages (2)

- Many pre-college controls
 - Ability measures
 - Proxies for non-cognitive attributes (e.g. credits accumulated in school for effort)
 - Time-varying controls
- Help reduce and test for omitted variable bias
- Opportunities to test for selection bias (variations in college practices, changes over time, compare students to themselves in other classes)

Advantages (3)

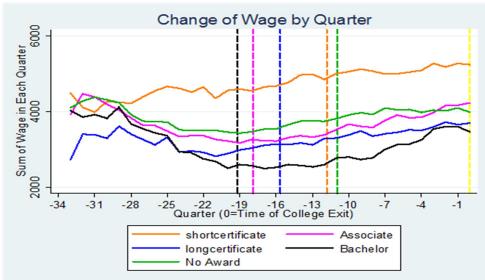
- More precise and accurate measures of earnings/income:
 - Self-reports less reliable at lower earnings (overstate low income): compress the education-earnings premium
 - Self-reports more measurement error for the less education (low education persons misstating their income): reduce precision
 - More educated persons have multiple jobs (bonuses/commissions)
 - No non-response missing data (CPS is 20-30%)
- Data on income over time, including before and during college, and quarterly (not annual)



Disadvantages with Linked Data (1)

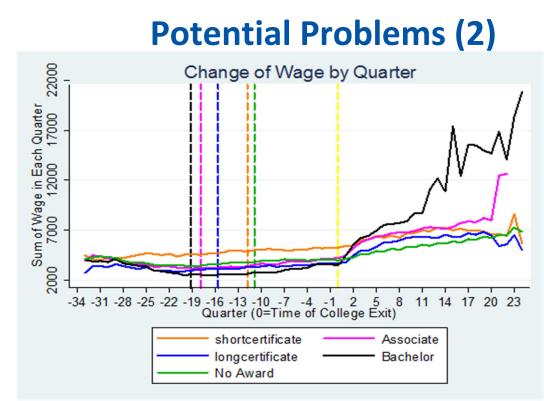
- SES typically missing (use occupation, geocode, financial aid)
- Attitudinal data usually not available
- UI data does not cover everyone and sample truncation or censoring may be endogenous
 - Students who move across state lines, self-employed, military, some federal workers
 - Cannot be sure that missing earnings is zero

Endogenous Mobility


Disadvantages (2)

•Data cleaning and computation more complex – can require several months of work to complete

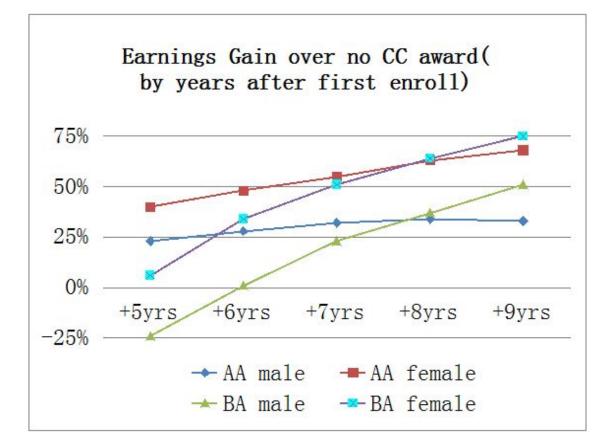
- Information is recorded in different data structures; requires quite a bit of work to get them into the same structure so that you can analyze them together in the same model
- Even basic variables require time to compute (e.g. number of college credits will need information on what is a college credit)



Examining Economics Returns to Education: Potential Problems (1)

- "Lock-in" effect
 - May exist even after controlling for opportunity cost
 - may vary across different award groups
 - Implication for Mincerian and Individual fixed effects models?

- Wage Growth
 - Higher post-college growth rate compared to pre-college period
 - May vary across different award groups: time out of college, growth rate
 - Implication for Mincerian and Individual fixed effects models?

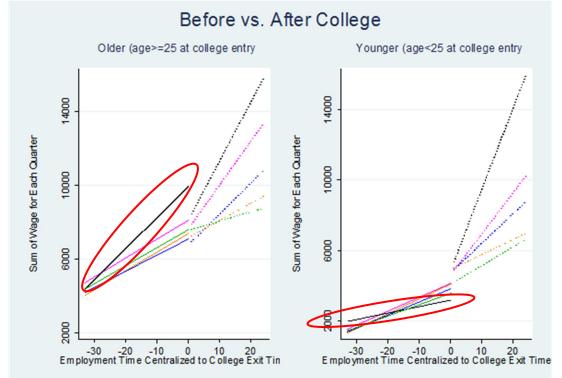

Example: Mincerian Estimates Based on Different Model Specifications

	Dependent	Variable. Quart	erly Earnings		-
	i	2	3	4	5
Highest degree: Bachelor	304.60***	603.14***	649.57 ***	1569.79***	175.16**
	(70.07)	(70.05)	(71.83)	(130.52)	(80.79)
Highest degree: Associate	354.22***	364.75***	367.69***	1028.17***	51.73
8 8	(54.81)	(53.93)	(53.89)	(93.51)	(59.51)
··· · · · · · ·	(34.01)	(33.73)	, ,	. ,	(37.31)
Highest degree: Longcert	121.58	82.56	86.01	236.49	-71.45
	(101.38)	(100.18)	(100.08)	(161.89)	(110.58)
	` ´	· /	110 014444	2.00 7.000	× ,
Highest degree: Shortcert	459.38***	405.41***	412.91***	368.76**	486.20
	(131.991)	(132.43)	(132.42)	(168.62)	(171.65)
Still Enrolled by First Quarter		-1108.30***	-1019.03***	-493.63***	-699.12***
of 2012		(44.31)	(57.82)	(68.82)	(62.74)
Number of Quarters Since			12.58 **	33.42***	21.13***
College Exit			(5.38)	(5.65)	(5.48)
Enrolled*Bachelor				-1435.95***	
				(151.74)	
Enrolled*Associate				-1106.41***	
				(109.17)	
Enrolled*Longcert				-328.48	
c				(202.99)	
Enrolled*Short Shortcert				190.30	
				(264.11)	
					\sim
					\sim
Quarters Since Exit *Bachelor					334.45***
C					(39.51)
Quarters Since Exit *Associate					112.93***
Zunters Shiee Exit 71550elate					(14.07)
Quarters Since Exit *Longcert					33.48
Camilla Since Exit Longeon					(21.20)
Ouarters Since Exit *Short					-10.70
Shortcert					(20.85)
Shorwat	1	1	1	1	(20.03)
Observations	38,092	38,092	38,092	38,092	38.092
	0.1285	0.1424	0.1426	0.1466	0.1470
R-squared	0.1285	0.1424	0.1420	0.1400	0.1470

- Model 1: Traditional Mincerian
- Model 2: Control for whether still in college
- Model 3: Control for quarters out of college
- Model 4: Allow 2 to vary across award groups
- Model 5: Allow 3 to vary across award groups
- Model 6: Estimate returns by year

Rapid Early Growth in Earnings

Potential Problems (3)


• Wage variations across industry

	Before	After	Average
	College	College	Quarterly
			Earnings
Admin & support & waste	3.97	3.33	4105.09
Construction	0.79	0	5582.46
Educational services	32.54	50.83	4023.51
Health care and social assistance	4.76	8.33	4895.49
Information & finance	5.56	2.5	5144.09
Manufacturing	10.32	0.83	8988.51
Public administration	2.38	2.5	6601.57
Retail and wholesale trade	14.29	8.33	3709.98
Services	25.4	22.5	2777.67
Others	0	0.83	6935.2
Ν	126	120	63,714

Potential Problems (4)

• Time-varying Factors that Influence both Degree Attainment and Wage

- For BA earners
- Totally different trajectories before college
- Similar trajectories after college
- Below average wage for young BA earners before college

Why?

Potential Problems (5)

• Violation of "Strict Exogeneity Assumption" Underlying Fixed Effects Models

- What is the assumption?
- In what way could it be violoated?
- How can we test it?

Substantial variations in returns to different field of study

Practicalities of Using Linked Data (1)

- Need links with state system officials and UI data-holders
 - Personal relationships to persuade data-owners that research is useful
 - Work with many agencies; some have good mutual relationships
- This is not a priority for state officers; may take time
- Cannot ask repeatedly for more information
 - Need to know exactly how much data you need
 - Data-owners typically do not mind if ask for more years if data is all in same format

Practicalities (2)

- Cannot be a "lone wolf"
 - No carte blanche from data-owners
 - Must allow review of your work by data donors
- Cannot share
 - Data donors will likely not allow sharing of data: need to think about how this impacts on publication prospects
- Work may have direct policy implications:
 - States may ask for technical assistance or policy recommendations
 - States may not like results

Data Practice

- Fake data
- Created to resemble data structure in real data sets
- Six data files: course, student, award, nsc, cpi2010, wage
- Using STATA for data clean and merge
- Other software for data cleaning: e.g. SAS, R, SPSS, etc.

Some Useful Tips with STATA

- Use the "help" command: e.g. help reg
- Always create a "do" file instead of writing codes directly in the command window
- Difference between string and numeric values
 - if female==1 vs. if female=="1"
- Some useful command in data cleaning
 - use, save
 - generate, replace
 - keep, drop
 - rename, destring, tostring, substr
 - collapse, merge, append
 - tab, sum, scatter, hist, twoway

Example: Cleaning Data (1)

• Clean transcript data

flag college-level course

Coding Sheme: College-level course: course number>100 (e.g. ENG111) Stata hint: substr, destring

	course	term	grade	program_cip	credits	id
1	BI0101	FA07	C-Average	240101	4	1
2	ITE115	FA07	A-Excellent	240101	3	1
3	мтноз	FA07	W-Withdrawal	240101	5	1
4	AST117	SP08	A-Excellent	240101	1	1

*find the course number; use "C:\Users\DiX\Desktop\projects\AEFP\Data for AEFP\course", clear gen csnum=substr(course,4,3) destring csnum, replace

*flag college-level course; gen crscl=0 replace crscl=1 if csnum>100

Example: Cleaning Data (1) continued

• Clean transcript data

create variable for the number of college-level credits earned for a course
 Coding Sheme: Pass a course: a letter grade D or above, P, S
 Stata hint: 1) whether the student passed the course
 2) and its to be above the student passed the course

2) credits*whether pass*whether college

```
*whether the student earned any credits from the course;
gen anycr=0
replace anycr=1 if grade=="A-Excellent" | grade=="B-Good" | grade=="C-Average" | grade=="D-Poor" |
grade=="P-Pass" | grade=="S-Satisfactory"
```

```
*calculate number of college-level credits earned;
gen crsclcr=0
replace crsclcr=anycr*credits if crscl==1
```


Example: Cleaning Data (1) continued

- Clean transcript data
 - recode 'term' to indicate quarters elapsed since the third quarter of 2007 (summer 2007);

Coding Sheme: term to quarter: spring (q1), summer (q3), fall (q4)

Stata hint: jumps between spring and summer

```
gen time=0
replace time=1 if term=="FA07"
replace time=2 if term=="SP08"
replace time=4 if term=="SU08"
replace time=5 if term=="FA08"
replace time=6 if term=="SP09"
```

•••••

save "C:\DiX\Desktop\projects\AEFP\Data for AEFP\courseclean", replace

Example: Cleaning Data (2)

- Create student-level variables using cleaned transcript data
 - total number of college-level credits earned
 - Stata hints: collapse

**total number of college-level credits earned use "C:\DiX\Desktop\projects\AEFP\Data for AEFP\courseclean", clear sort id collapse (sum) crsclcr, by (id) save "C:\DiX\Desktop\projects\AEFP\Data for AEFP\credits", replace

Example: Cleaning Data (3)

- Clean student-level demographic data
 - recode gender into female (1/0 dummy)

Coding Scheme: Gender: 1 -- Male; 2 -- Female

	gender	race	birthdate	id	
1	2	1	08/02/1978	1	
2	1	1	03/10/1986	2	
3	1	1	03/16/1982	3	
4	2	1	07/11/1986	4	
5	2	1	05/23/1989	5	
6	1	1	09/01/1981	6	
7	1	1	05/03/1988	7	

use "DiX\Desktop\projects\AEFP\Data for AEFP\student", clear

*recode gender; gen female=0 replace female=1 if gender=="2"

Example: Cleaning Data (3) continued

- Clean student-level demographic data
 - recode race into a set of dummies

Coding Scheme: Race: 1 -- White; 2 -- Black; 3 -- American Indian;

4 -- Asian; 5 -- Hispanic; 6 -- Unknown

Stata hint: tab race

	race	Freq.	Percent	Cum.
	1	75	72.12	72.12
	2	20	19.23	91.35
	4	3	2.88	94.23
gen white=0	5	4	3.85	98.08
replace white=1 if race=="1"	6	2	1.92	100.00
gen black=0	Total	104	100.00	
replace black=1 if race=="2"				
gen raceother=0				

replace raceother=1 if race=="4" | race=="5" | race=="6"

Example: Cleaning Data (3) continued

Clean student-level demographic data

calculate student age at the beginning of 2012
 Stata hint: substr, destring, mdy: (date1-date2)/365.25

*calculate age at the beginning of 2012; gen month_birth=substr(birthdate,1,2) destring month_birth, replace gen day_birth = substr(birthdate,4,2) destring day_birth, replace gen year_birth = substr(birthdate,7,4) destring year_birth, replace

gen date_birth = mdy(month_birth,day_birth,year_birth)
gen date_2012 = mdy(1,1,2012)
gen agedays = date_2012 - date_birth
gen age2012 = agedays/365.25

keep id female white black raceother age2012 save "DiX\Desktop\projects\AEFP\Data for AEFP\studentclean", replace

Example: Cleaning Data (4)

- Create student-level variables using administrative and nsc data
 - highest degree received (BA or above, AA, Long-term Certificate, Short-term Certificate)

	туре	public_pri~e	enrol Iment~n	enro l'Iment~d	grad_date	degree_trans	10
22	4	Public	20090831	20091211			19
23	4	Public	20100119	20100506			19
24	4	Public			20100731	MASTER OF SOCIAL WORK	19
25	2	Public	20110119	20110510			22
26	4	Private	20120801	20121231			23
27	4	Private	20130101	20130430			23

use "DiX\Desktop\projects\AEFP\Data for AEFP\nsc", clear

¥ I . I I	degree_trans	Freq.	Percent	Cum.
*clean degree received;				
tab degree trans	AAPSY	1	16.67	16.67
gen award="BA"	BACHELOR OF ARTS	1	16.67	33.33
8	BACHELOR OF FINE ARTS	1	16.67	50.00
replace award="AS" if degree_trans=="AAPSY"	BACHELOR OF SCIENCE	2	33.33	83.33
replace award="" if degree_trans==""	MASTER OF SOCIAL WORK	1	16.67	100.00
				· · · · · · · · · · · · · · · · · · ·

Example: Cleaning Data (4) continued

keep la award
*merge with award data;
append using "C:\Users\Fang\Desktop\projects\Capsee\works hop proposal\Data for AEFP\award"
*code degree ever earned;
gen ba=0
replace ba=1 if award=="BA"
gen aa=0
replace aa=1 if award=="AA" award=="AA&S" award=="AAA" award=="AAS" award=="AS"
gen lcert=0
replace aa=1 if award=="CERT" award=="DIPL"
gen scert=0
replace scert=1 if award=="CSC"

keep if award!=""

koon id award

**code the highest degree earned; collapse (max) ba aa lcert scert, by (id)

gen bachelor=0
replace bachelor=1 if ba==1
gen associate=0
replace associate=1 if ba==0 & aa==1
gen longcertificate=0
replace longcertificate=1 if ba==0 & aa==0 & lcert==1
gen shortcertificate=0
replace shortcertificate=1 if ba==0 & aa==0 & lcert==0
 & scert==1

keep id bachelor associate longcertificate
 shortcertificate
save"DiX\Desktop\projects\AEFP\Data for
 AEFP\awardclean", replace

Example: Cleaning Data (5)

• Create quarter-level variables using wage data

adjust for CPI to 2010 dollars, formula? wagecpi=(100/CPI)*wage
 Stata hint: destring, rename, merge

destring employment_year, generate(year)
rename employment_quarter quart

*merge with cip data; sort year quart merge m:1 year quart using "DiX\Desktop\projects\AEFP\Data for AEFP\cpi2010"

adjust cpi; generate wagecpi=100(wage/cpi)

Example: Cleaning Data (5)

- Create quarter-level variables using wage data
 - calculate average quarterly earnings in 2012: Sum of wage/number of quarters worked

*only keep 2012 wage; keep if year==2012 keep id wagecpi quart

*collapse data so each student has only one entry for each quarter collapse (sum)wagecpi, by (id time)

**calculate number of quarters observed and add wage together; gen count=1 collapse (sum)wagecpi count, by (id)

*calculate average quarterly earnings; gen wage2012=wagecpi/count keep id wage2012

Merging Data

• Merge different data sets together:

drop _merge

merge 1:1 id using "DiX\Desktop\projects\AEFP\Data for AEFP\awardclean"
drop _merge
merge 1:1 id using "DiX\Desktop\projects\AEFP\Data for AEFP\credits"
drop _merge
merge 1:1 id using "DiX\Desktop\projects\AEFP\Data for AEFP\studentclean"

drop _merge

• Post-merging recode: replace wage2012=0 if wage2012==. replace bachelor=0 if bachelor==. replace associate=0 if associate==. replace longcertificate=0 if longcertificate==. replace shortcertificate=0 if shortcertificate==.

Conclusions

- State administrative allows for exploration of the heterogeneity of pathways and course taking patterns
- Many different ways to test for how college influences student outcomes and earnings
- Many opportunities to perform validity checks
- Potential problems to watch out for
- Search for exogenous changes to identify causal influences of college choices on outcomes

Visit us on the web at <u>capseecenter.org</u> We're also on Facebook and Twitter.

Center for Analysis of Postsecondary Education and Employment Teachers College, Columbia University 525 West 120th Street, Box 174, New York, NY 10027 <u>capsee@columbia.edu</u> 212.678.3091

CAPSEE is funded through a grant (R305C110011) from the Institute of Education Sciences, U.S. Department of Education.